Estrada Index of Random Bipartite Graphs

نویسنده

  • Yilun Shang
چکیده

The topological structures of many social, biological, and technological systems can be characterized by the connectivity properties of the interaction pathways (edges) between system components (vertices) [1]. Starting with the Königsberg seven-bridge problem in 1736, graphs with bidirectional or symmetric edges have ideally epitomized structures of various complex systems, and have developed into one of the mainstays of the modern discrete mathematics and network theory. Formally, a simple graph G consists of a vertex set V = {1, 2, · · · , n} and an edge set E ⊆ V × V . The adjacency matrix of G is a symmetric (0, 1)-matrix A(G) = (aij) ∈ Rn×n, where aij = aji = 1 if vertices i and j are adjacent, and aij = aji = 0 otherwise. It is well-known in algebraic graph theory that A(G) has exactly n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn due to its symmetry. They are usually called the spectrum (eigenvalues) of G itself [2]. A spectral graph invariant, the Estrada index EE(G) of G, is defined as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the "Middle Earth" of Network Spectra via a Gaussian Matrix Function

We study a Gaussian matrix function of the adjacency matrix of artificial and real-world networks. We motivate the use of this function on the basis of a dynamical process modeled by the time-dependent Schrödinger equation with a squared Hamiltonian. In particular, we study the Gaussian Estrada index-an index characterizing the importance of eigenvalues close to zero. This index accounts for th...

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

Albertson energy and Albertson Estrada index of graphs

‎Let $G$ be a graph of order $n$ with vertices labeled as $v_1‎, ‎v_2,dots‎ , ‎v_n$‎. ‎Let $d_i$ be the degree of the vertex $v_i$ for $i = 1‎, ‎2‎, ‎cdots‎ , ‎n$‎. ‎The Albertson matrix of $G$ is the square matrix of order $n$ whose $(i‎, ‎j)$-entry is equal to $|d_i‎ - ‎d_j|$ if $v_i $ is adjacent to $v_j$ and zero‎, ‎otherwise‎. ‎The main purposes of this paper is to introduce the Albertson ...

متن کامل

Estrada and L-Estrada Indices of Edge-Independent Random Graphs

Let G be a simple graph of order n with eigenvalues λ1, λ2, · · · , λn and normalized Laplacian eigenvalues μ1,μ2, · · · ,μn. The Estrada index and normalized Laplacian Estrada index are defined as EE(G) = ∑n k=1 e λk and LEE(G) = ∑n k=1 e μk−1, respectively. We establish upper and lower bounds to EE and LEE for edge-independent random graphs, containing the classical Erdös-Rényi graphs as spec...

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015